蛋白质(protein)是构成生命体的重要物质,其功能在很大程度上取决于它独特的三维结构。在过去的50年里,“蛋白质折叠问题”一直是生物学界最大的谜团。尽管X 射线晶体学和冷冻电子显微镜等实验技术的加入已经帮助确定了约10万种蛋白质结构,但与人体内数十亿已知蛋白质序列的相比,可谓是杯水车薪。 转折出现在2018年,曾开发了著名人工智能围棋程序AlphaGo的人工智能企业DeepMind带来了一种名为AlphaFold的人工智能系统,首次在国际蛋白质结构预测竞赛(CASP)上亮相。而就在2020年的CASP 中,该公司带来了进阶版的AlphaFold2程序击败了大约100个团队,对三分之二的蛋白靶点给出几乎与实验室解析相等的结构预测结果。惊叹于人工智能的卓越,CASP的联合创始人John Moult甚至直言,“从某种意义上说,问题已经解决。”
今天,在解决蛋白质折叠这一“生物学近50年来的重大难题”方面,顶级期刊《Nature》及《Science》上的研究报告分别为生物学界照进了一束光。
DeepMind公司在《Nature》杂志上发表的题为Highly accurate protein structure prediction with AlphaFold的论文中,公开了进阶版的AlphaFold2人工智能系统的源代码,并且详细描述了它的设计框架和训练方法。与初版的AlphaFold相比,AlphaFold2解析蛋白结构的速度有了显著的提升。
当然,与AlphaFold2相比,RoseTTAFold在准确度上稍微逊色一些。不过,AlphaFold2仅能解决单个蛋白质的结构问题,而RoseTTAFold可用于预测不同蛋白相互结合的结构模型,比如使用IL-12和IL-12受体(IL-12R)的序列预测复合体结构,实验证明最终结果与此前用冷冻电子显微镜解析的结构非常相似。
今天,在解决蛋白质折叠这一“生物学近50年来的重大难题”方面,顶级期刊《Nature》及《Science》上的研究报告分别为生物学界照进了一束光。
DeepMind公司在《Nature》杂志上发表的题为Highly accurate protein structure prediction with AlphaFold的论文中,公开了进阶版的AlphaFold2人工智能系统的源代码,并且详细描述了它的设计框架和训练方法。与初版的AlphaFold相比,AlphaFold2解析蛋白结构的速度有了显著的提升。
当然,与AlphaFold2相比,RoseTTAFold在准确度上稍微逊色一些。不过,AlphaFold2仅能解决单个蛋白质的结构问题,而RoseTTAFold可用于预测不同蛋白相互结合的结构模型,比如使用IL-12和IL-12受体(IL-12R)的序列预测复合体结构,实验证明最终结果与此前用冷冻电子显微镜解析的结构非常相似。
End
参考资料:
[1]https://www.nature.com/articles/d41586-021-01968-y
[2]https://www.sciencemag.org/news/2021/07/researchers-unveil-phenomenal-new-ai-predicting-protein-structures
[3]https://www.nature.com/articles/s41586-021-03819-2#Abs1
[4]https://science.sciencemag.org/content/early/2021/07/14/science.abj8754